Proerectile effects of dopamine D2-like agonists are mediated by the D3 receptor in rats and mice.

نویسندگان

  • Gregory T Collins
  • Andrew Truccone
  • Faiza Haji-Abdi
  • Amy Hauck Newman
  • Peter Grundt
  • Kenner C Rice
  • Stephen M Husbands
  • Benjamin M Greedy
  • Cecile Enguehard-Gueiffier
  • Alain Gueiffier
  • Jianyong Chen
  • Shaomeng Wang
  • Jonathan L Katz
  • David K Grandy
  • Roger K Sunahara
  • James H Woods
چکیده

Dopamine D(2)-like agonists induce penile erection (PE) and yawning in a variety of species, effects that have been suggested recently to be specifically mediated by the D(4) and D(3) receptors, respectively. The current studies were aimed at characterizing a series of D(2), D(3), and D(4) agonists with respect to their capacity to induce PE and yawning in the rat and the proerectile effects of apomorphine [(R)-(-)-5,6,6a,7-tetrahydro-6-methyl-4H-dibenzo-[de,g]quinoline-10,11-diol hydrochloride] in wild-type and D(4) receptor (R) knockout (KO) mice. All D(3) agonists induced dose-dependent increases in PE and yawning over a similar range of doses, whereas significant increases in PE or yawning were not observed with any of the D(4) agonists. Likewise, D(2), D(3), and D(4) antagonists were assessed for their capacity to alter apomorphine- and pramipexole (N'-propyl-4,5,6,7-tetrahydrobenzothiazole-2,6-diamine dihydrochloride)-induced PE and yawning. The D(3) antagonist, PG01037 [N-{4-[4-(2,3-dichlorophenyl)-piperazin-1-yl]-trans-but-2-enyl}-4-pyridine-2-yl-benzamide hydrochloride], inhibited the induction of PE and yawning, whereas the D(2) antagonist, L-741,626 [3-[4-(4-chlorophenyl)-4-hydroxypiperidin-l-yl]methyl-1H-indole], reversed the inhibition of PE and yawning observed at higher doses. The D(4) antagonist, L-745,870 [3-(4-[4-chlorophenyl]piperazin-1-yl)-methyl-1H-pyrrolo[2,3-b]pyridine trihydrochloride], did not alter apomorphine- or pramipexole-induced PE or yawning. A role for the D(3) receptor was further supported because apomorphine was equipotent at inducing PE in wild-type and D(4)RKO mice, effects that were inhibited by the D(3) antagonist, PG01037, in both wild-type and D(4)R KO mice. Together, these studies provide strong support that D(2)-like agonist-induced PE and yawning are differentially mediated by the D(3) (induction) and D(2) (inhibition) receptors. These studies fail to support a role for the D(4) receptor in the regulation of PE or yawning by D(2)-like agonists.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Effects of selective dopamine receptor (Dl and D2) agonists on stress-induced gastric ulcer in rat

  It has been revealed that dopamine (DA) modulates gastro-duodenal responses to stress. Several investigations have been made to identify the mechanisms and/or receptors by which DA or its promoters exert their gastroprotective function against stress, however there are many discrepancies in this respect. In order to clarify the relative contribution and/or interaction of two DA receptor subty...

متن کامل

Central mechanisms regulating penile erection in conscious rats: the dopaminergic systems related to the proerectile effect of apomorphine.

Apomorphine has been used as a pharmacological probe of dopaminergic receptors in a variety of central nervous system disorders. The utility of apomorphine as an agent for the treatment of erectile dysfunction has also been demonstrated clinically. Apomorphine is a nonselective dopaminergic receptor agonist with potent binding affinity (Ki) of 101, 32, 26, 2.6, and 10 nM for D1, D2, D3, D4, and...

متن کامل

The Effects of Dopamine Receptor Agents on Swim Stress-Induced Inhibition of Naloxone-Induced Jumping Behavior in Morphine-Dependent Mice

In the present study, interactions of dopamine receptor agonists and antagonists with water swimming stress (WSS) on naloxone-induced jumping in morphine-dependent mice were examined. Mice were rendered dependent as described in the methods section. The opioid receptor antagonist, naloxone (1 mg/kg), was injected to elicit jumping (as a withdrawal sign). The first group exposed to WSS in the pr...

متن کامل

Presence of prejunctional D2-dopaminoceptors and α2-adrenoceptors on the cholinergic nerve of the common bile duct of guinea pig

On most adrenergic and cholinergic nerve terminals, prejunctional α-adrenoceptors belonging to the α2-subtype have been identified. Activation of these receptors will decrease the release of norepinephrine. It has been reported that several isolated tissue preparations contain prejunctional dopamine receptors, the stimulation of which inhibits neurotransmission. It has remained uncertain whethe...

متن کامل

The Effects of Dopamine Receptor Agents on Swim Stress-Induced Inhibition of Naloxone-Induced Jumping Behavior in Morphine-Dependent Mice

In the present study, interactions of dopamine receptor agonists and antagonists with water swimming stress (WSS) on naloxone-induced jumping in morphine-dependent mice were examined. Mice were rendered dependent as described in the methods section. The opioid receptor antagonist, naloxone (1 mg/kg), was injected to elicit jumping (as a withdrawal sign). The first group exposed to WSS in the pr...

متن کامل

Differential Roles for Dopamine D1-Like and D2-Like Receptors in Mediating the Reinforcing Effects of Cocaine: Convergent Evidence from Pharmacological and Genetic Studies

A series of studies by Drs. Barak Caine, James Woods, Gregory Collins, Jonathan Katz and Takato Hiranita demonstrated a novel and unique reinforcing effect using dopamine (DA) D2-like receptor [D2-like R: D2, D3, and D4 receptor subtypes (respectively, D2R, D3R, and D4R)] agonists in rats and genetically modified mice. In order to understand how important their findings are, a comparison was ma...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Journal of pharmacology and experimental therapeutics

دوره 329 1  شماره 

صفحات  -

تاریخ انتشار 2009